p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.56C24, C22.113C25, C42.104C23, Q8⋊5D4⋊25C2, Q8⋊6D4⋊24C2, Q8⋊3Q8⋊24C2, Q8○(C42⋊2C2), C4⋊C4.503C23, (C2×C4).103C24, Q8.44(C4○D4), C4⋊Q8.224C22, (C4×D4).244C22, (C2×D4).485C23, (C2×Q8).492C23, (C4×Q8).231C22, C4⋊1D4.116C22, C4⋊D4.231C22, C22⋊C4.112C23, (C22×C4).381C23, (C2×C42).960C22, C22⋊Q8.122C22, C2.40(C2.C25), C42⋊2C2.29C22, C4.4D4.178C22, C42.C2.159C22, (C22×Q8).366C22, C23.36C23⋊43C2, C22.49C24⋊18C2, C22.47C24⋊25C2, C22.36C24⋊23C2, C42⋊C2.239C22, C23.33C23⋊32C2, C22.53C24⋊18C2, C22.34C24⋊15C2, C22.46C24⋊26C2, C23.32C23⋊19C2, C22.D4.35C22, (C4×C4○D4)⋊38C2, C4⋊C4○(C42⋊2C2), C4.286(C2×C4○D4), (C2×Q8)○(C42⋊2C2), C2.69(C22×C4○D4), (C2×C4⋊C4).714C22, (C2×C4○D4).236C22, SmallGroup(128,2256)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.113C25
G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=e2=f2=a, g2=ba=ab, dcd-1=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 716 in 515 conjugacy classes, 388 normal (36 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C22×Q8, C2×C4○D4, C4×C4○D4, C23.32C23, C23.33C23, C23.36C23, C22.34C24, C22.36C24, Q8⋊5D4, Q8⋊6D4, C22.46C24, C22.47C24, C22.49C24, Q8⋊3Q8, C22.53C24, C22.113C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, C25, C22×C4○D4, C2.C25, C22.113C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 29)(2 30)(3 31)(4 32)(5 16)(6 13)(7 14)(8 15)(9 41)(10 42)(11 43)(12 44)(17 21)(18 22)(19 23)(20 24)(25 51)(26 52)(27 49)(28 50)(33 57)(34 58)(35 59)(36 60)(37 56)(38 53)(39 54)(40 55)(45 61)(46 62)(47 63)(48 64)
(1 47)(2 46)(3 45)(4 48)(5 37)(6 40)(7 39)(8 38)(9 50)(10 49)(11 52)(12 51)(13 55)(14 54)(15 53)(16 56)(17 35)(18 34)(19 33)(20 36)(21 59)(22 58)(23 57)(24 60)(25 44)(26 43)(27 42)(28 41)(29 63)(30 62)(31 61)(32 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 20 3 18)(2 17 4 19)(5 42 7 44)(6 43 8 41)(9 13 11 15)(10 14 12 16)(21 32 23 30)(22 29 24 31)(25 56 27 54)(26 53 28 55)(33 62 35 64)(34 63 36 61)(37 49 39 51)(38 50 40 52)(45 58 47 60)(46 59 48 57)
(1 19 3 17)(2 18 4 20)(5 43 7 41)(6 42 8 44)(9 16 11 14)(10 15 12 13)(21 29 23 31)(22 32 24 30)(25 40 27 38)(26 39 28 37)(33 45 35 47)(34 48 36 46)(49 53 51 55)(50 56 52 54)(57 61 59 63)(58 64 60 62)
(1 43 31 9)(2 44 32 10)(3 41 29 11)(4 42 30 12)(5 23 14 17)(6 24 15 18)(7 21 16 19)(8 22 13 20)(25 62 49 48)(26 63 50 45)(27 64 51 46)(28 61 52 47)(33 37 59 54)(34 38 60 55)(35 39 57 56)(36 40 58 53)
G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,29)(2,30)(3,31)(4,32)(5,16)(6,13)(7,14)(8,15)(9,41)(10,42)(11,43)(12,44)(17,21)(18,22)(19,23)(20,24)(25,51)(26,52)(27,49)(28,50)(33,57)(34,58)(35,59)(36,60)(37,56)(38,53)(39,54)(40,55)(45,61)(46,62)(47,63)(48,64), (1,47)(2,46)(3,45)(4,48)(5,37)(6,40)(7,39)(8,38)(9,50)(10,49)(11,52)(12,51)(13,55)(14,54)(15,53)(16,56)(17,35)(18,34)(19,33)(20,36)(21,59)(22,58)(23,57)(24,60)(25,44)(26,43)(27,42)(28,41)(29,63)(30,62)(31,61)(32,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,3,18)(2,17,4,19)(5,42,7,44)(6,43,8,41)(9,13,11,15)(10,14,12,16)(21,32,23,30)(22,29,24,31)(25,56,27,54)(26,53,28,55)(33,62,35,64)(34,63,36,61)(37,49,39,51)(38,50,40,52)(45,58,47,60)(46,59,48,57), (1,19,3,17)(2,18,4,20)(5,43,7,41)(6,42,8,44)(9,16,11,14)(10,15,12,13)(21,29,23,31)(22,32,24,30)(25,40,27,38)(26,39,28,37)(33,45,35,47)(34,48,36,46)(49,53,51,55)(50,56,52,54)(57,61,59,63)(58,64,60,62), (1,43,31,9)(2,44,32,10)(3,41,29,11)(4,42,30,12)(5,23,14,17)(6,24,15,18)(7,21,16,19)(8,22,13,20)(25,62,49,48)(26,63,50,45)(27,64,51,46)(28,61,52,47)(33,37,59,54)(34,38,60,55)(35,39,57,56)(36,40,58,53)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,29)(2,30)(3,31)(4,32)(5,16)(6,13)(7,14)(8,15)(9,41)(10,42)(11,43)(12,44)(17,21)(18,22)(19,23)(20,24)(25,51)(26,52)(27,49)(28,50)(33,57)(34,58)(35,59)(36,60)(37,56)(38,53)(39,54)(40,55)(45,61)(46,62)(47,63)(48,64), (1,47)(2,46)(3,45)(4,48)(5,37)(6,40)(7,39)(8,38)(9,50)(10,49)(11,52)(12,51)(13,55)(14,54)(15,53)(16,56)(17,35)(18,34)(19,33)(20,36)(21,59)(22,58)(23,57)(24,60)(25,44)(26,43)(27,42)(28,41)(29,63)(30,62)(31,61)(32,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,20,3,18)(2,17,4,19)(5,42,7,44)(6,43,8,41)(9,13,11,15)(10,14,12,16)(21,32,23,30)(22,29,24,31)(25,56,27,54)(26,53,28,55)(33,62,35,64)(34,63,36,61)(37,49,39,51)(38,50,40,52)(45,58,47,60)(46,59,48,57), (1,19,3,17)(2,18,4,20)(5,43,7,41)(6,42,8,44)(9,16,11,14)(10,15,12,13)(21,29,23,31)(22,32,24,30)(25,40,27,38)(26,39,28,37)(33,45,35,47)(34,48,36,46)(49,53,51,55)(50,56,52,54)(57,61,59,63)(58,64,60,62), (1,43,31,9)(2,44,32,10)(3,41,29,11)(4,42,30,12)(5,23,14,17)(6,24,15,18)(7,21,16,19)(8,22,13,20)(25,62,49,48)(26,63,50,45)(27,64,51,46)(28,61,52,47)(33,37,59,54)(34,38,60,55)(35,39,57,56)(36,40,58,53) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,29),(2,30),(3,31),(4,32),(5,16),(6,13),(7,14),(8,15),(9,41),(10,42),(11,43),(12,44),(17,21),(18,22),(19,23),(20,24),(25,51),(26,52),(27,49),(28,50),(33,57),(34,58),(35,59),(36,60),(37,56),(38,53),(39,54),(40,55),(45,61),(46,62),(47,63),(48,64)], [(1,47),(2,46),(3,45),(4,48),(5,37),(6,40),(7,39),(8,38),(9,50),(10,49),(11,52),(12,51),(13,55),(14,54),(15,53),(16,56),(17,35),(18,34),(19,33),(20,36),(21,59),(22,58),(23,57),(24,60),(25,44),(26,43),(27,42),(28,41),(29,63),(30,62),(31,61),(32,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,20,3,18),(2,17,4,19),(5,42,7,44),(6,43,8,41),(9,13,11,15),(10,14,12,16),(21,32,23,30),(22,29,24,31),(25,56,27,54),(26,53,28,55),(33,62,35,64),(34,63,36,61),(37,49,39,51),(38,50,40,52),(45,58,47,60),(46,59,48,57)], [(1,19,3,17),(2,18,4,20),(5,43,7,41),(6,42,8,44),(9,16,11,14),(10,15,12,13),(21,29,23,31),(22,32,24,30),(25,40,27,38),(26,39,28,37),(33,45,35,47),(34,48,36,46),(49,53,51,55),(50,56,52,54),(57,61,59,63),(58,64,60,62)], [(1,43,31,9),(2,44,32,10),(3,41,29,11),(4,42,30,12),(5,23,14,17),(6,24,15,18),(7,21,16,19),(8,22,13,20),(25,62,49,48),(26,63,50,45),(27,64,51,46),(28,61,52,47),(33,37,59,54),(34,38,60,55),(35,39,57,56),(36,40,58,53)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2J | 4A | ··· | 4R | 4S | ··· | 4AG |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C2.C25 |
kernel | C22.113C25 | C4×C4○D4 | C23.32C23 | C23.33C23 | C23.36C23 | C22.34C24 | C22.36C24 | Q8⋊5D4 | Q8⋊6D4 | C22.46C24 | C22.47C24 | C22.49C24 | Q8⋊3Q8 | C22.53C24 | Q8 | C2 |
# reps | 1 | 1 | 1 | 1 | 6 | 3 | 3 | 2 | 1 | 3 | 3 | 3 | 1 | 3 | 8 | 4 |
Matrix representation of C22.113C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,3,0,0,0,0,2,0,0,0,0,2,0,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,3,0,0,0,0,0,0,3,0,0],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;
C22.113C25 in GAP, Magma, Sage, TeX
C_2^2._{113}C_2^5
% in TeX
G:=Group("C2^2.113C2^5");
// GroupNames label
G:=SmallGroup(128,2256);
// by ID
G=gap.SmallGroup(128,2256);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,184,570,136,1684,242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=e^2=f^2=a,g^2=b*a=a*b,d*c*d^-1=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations